
(1) A Three-Layered Explanation of Paradoxes

(1.1) The Liar Paradox

'This sentence is false' (P). If this sentence is true, then it is false; if it is false, then it is true (Tarski,
"The Concept of Truth," 1933). This paradox in fact contains three elements:

1) The negative judgment of P. It attempts to negate (change) the state of P and possesses a
driving nature: motive force action.

2) P itself. It is an isolated, independent proposition: isolation action.

3) P itself being true. This means that for P, as a judgment, to judge other judgments, it must
itself be true. Only on this basis can it judge other judgments (at least, we must default to this
being the case). In other words, P itself being true is a prerequisite for making a judgment. This is
the manifestation of P: manifestation action.

Let us see if these three constitute a no form integrated transformation:

1) If 'this sentence' (P itself) is false (the negative judgment of P), then 'this sentence is true' (P
itself being true). That is, a judgment is made about P, and this judgment is true.

2) If 'this sentence' (P itself) is true (P itself being true), then the judgment can be made: 'this
sentence is false' (the negative judgment of P).

3) To make a negative judgment about a proposition itself (the negative judgment of P), the
proposition itself must be true (P itself being true); otherwise, it is not possible to make a
judgment. From this, the proposition P itself can be determined.

This already contains the six transformations of a no form integrated transformation; the three
do indeed constitute a no form integrated transformation. The original expression of the paradox
is imprecise and confusing. Expressed in this way, it becomes clear.

In the subsection "Isolation Logic: The Unity of Formal Logic and Dialectical Logic," this paradox
was explained using dialectical logic and was classified as Ind (Indeterminate). However, the
explanation of it now using no form integrated transformation is clearer and more definite.

The explanation of the Liar Paradox using no form integrated transformation has already
transcended the scope of formal logical reasoning; no form integrated transformation is a
broader framework for reasoning. Therefore, it can be said that formal logic cannot explain such
a paradox. Formal logic often regards paradoxes as anomalies or unsolvable problems. The
framework of no form action theory regards them as a dynamic equilibrium.

1) That is to say, the explanation of this paradox is divided into three layers:

2) Formal logic considers this paradox to be an anomaly or unsolvable.

3) Dialectical logic can only describe the indeterminate state of this paradox.

No form integrated transformation reveals the essence of this paradox.

(1.2) Gödel's Incompleteness Theorems



The proof of Gödel's incompleteness theorems involves the construction of a self-referential
proposition similar to the Liar Paradox: 'This proposition is unprovable' (Q) (Gödel, "On Formally
Undecidable Propositions," 1931). In fact, its incompleteness embodies the incompleteness of
formal logic, because within the scope of formal logic, no basis can be found to explain the
self-transformation of this paradox. This clearly reveals the origin of Gödel's incompleteness
theorems: within the scope of formal logic, formal logic cannot explain such a paradox. This also
leads to the conclusion that to achieve completeness in reasoning, one must ascend to no form
action theory.

Analyzing proposition Q (slightly different from P):

1) The negative judgment of Q: motive force action.

2) Q itself: isolation action.

3) Q itself being true: manifestation action.

Let us see if these three constitute a no form integrated transformation:

1) If 'this proposition' (Q itself) is unprovable (the negative judgment of Q), then what is actually
being said is that Q itself is true.

2) If 'this proposition' (Q itself) is true (Q itself being true), then the judgment can be made: 'this
proposition is unprovable' (the negative judgment of Q).

3) To make a negative judgment about a proposition itself (the negative judgment of Q), the
proposition itself must be true (Q itself being true); otherwise, it is not possible to make a
judgment. From this, the proposition Q itself can be determined.

(2) Multidimensional Dialectical Logic: The Extension of Isolation Dialectical Logic

I believe that isolation dialectical logic can be extended. For example, suppose there are three
objects A₁, A₂, and A₃. If A₁ is negated, one obtains non-A₁: A₂ and A₃. In this way, by negating A₁,
one obtains A₂ and A₃ (this is also determining A₂ and A₃ through A₁). By negating A₂ and A₃, one
obtains A₁ (this is also determining A₁ through A₂ and A₃). Through this opposition, they can be
unified. Similarly, A₂ and 'A₁ and A₃', as opposites, can also be unified. A₃ and 'A₁ and A₂', as
opposites, can also be unified. These three unifications are, in fact, the unity of A₁, A₂, and A₃. In
other words, this kind of unity possesses a multidimensional unity of opposites, or rather,
multiple unities of opposites are synthesized together.

This can thus be extended to n opposing sides: A₁, A₂ ... Aₙ . This is a multidimensional unity of
opposites. We then say that this set of objects is in a multidimensional dialectical unity; they are
unified into a single unified object. Of course, this can also be extended to an infinite number of
opposing sides.

In this way, our understanding of 'unity' becomes more complex and multidimensional. Unity is
no longer just the simple fusion of two opposites, but the complex orchestration of multiple
oppositional dimensions, a dynamic equilibrium produced by different forces. This framework
embodies the dynamism among the different dimensions of multidimensional dialectical logic. In
traditional dialectics, the opposing sides are often seen as singular, but in this extension, the



relationship between the opposing sides is complex and compositional.

By introducing the concept of multiple opposing sides, this theory of multidimensional unity of
opposites allows the problem of unity to be viewed from multiple perspectives and multiple
dimensions. This not only enriches the application of dialectical logic but also provides a more
flexible way of thinking for solving complex problems.

There is a special case: if A₁ and A₂ are in opposition, and A₁ and A₃ are in opposition, then we can
unite these separate oppositions and treat them as a single opposition, thereby forming an
opposition between A₁ and non-A₁ (A₂ and A₃).

(3) Applying Multidimensional Dialectical Logic to Set Theory Below

(3.1) The Definition of a Set

Since modern mathematics is founded on set theory, explaining the 10 axioms in the ZFC
axiomatic set theory system is also to explain set theory, and thus to provide a foundation for
mathematics, a philosophical foundation for modern mathematics.

First, we use multidimensional dialectical logic to define a set: for a group of objects Aᵢ (where 'i'
is not predetermined), if this group of objects is in a multidimensional dialectical unity, then this
group of objects is unified into a single object A. We call this A a set. Since the set A is in a
dialectical unity, its various elements are all independent and are mutually determined ('mutually
determined' means that they define each other through their mutual oppositional relationship).
Therefore, they also possess the property of independence: affirming oneself and negating the
other. If there is only one object 'a', and it itself is determinate, then it can also form a set,
because it itself determines itself. This situation is 'a is a', a self manifesting a self. Note, the
elements of set A are mutually isolated (or mutually determined). This means that the elements
of A can be either absolutely isolated or relatively isolated. Relative isolation means that the
elements of a set are mutually isolated, but outside of the set, the elements may not possess
isolation.

This definition of a set seems reasonable. However, there is still a problem. If we do not need to
obtain a certain element from set A, then this definition of a set is sufficient. But if we need to be
able to obtain a certain element from set A, then this definition of a set lacks this function. This
definition of a set does not tell us how to obtain a certain element from set A; it only says that
according to dialectical logic, the two opposing sides can be mutually transformed and
determined. For example, in the subsection "Isolation Logic," we know that 'true and false can be
unified into Ind (Indeterminate)', but this does not tell us how to obtain true or false from Ind.
The acquisition of true or false is achieved through not(Ind). Therefore, it can be said that if we
need to be able to obtain a certain element from set A, then the scope of multidimensional
dialectical logic is greater than the definition of a set.

Because the three no form actions possess identity, no single action can exist alone. Therefore,
an isolated thing must be able to be manifested through a certain motive force process;
otherwise, it would violate the identity of no form action theory. Therefore, for a set, as an
isolated, independent individual, its manifestation is its structure. In other words, a set must be
constructible; it must be structurally determinate, in order to satisfy the identity of no form



action theory. In this way, a specific element can be obtained from this construction and be
manifested (for example: x is a natural number, 2x as a structure represents the set of even
numbers; the set composed of real numbers greater than 0 and less than 1), and thus manifest
the set itself. For a set with a finite number of elements, all elements can be obtained through
the method of enumeration (the most basic method).

This is, in fact, the Axiom of Constructibility: that all sets are constructible. However, the ZFC set
theory system does not have the Axiom of Constructibility, so this system needs to have the
Axiom of Constructibility added to it. When the ZFC system has the Axiom of Constructibility
added, it becomes ZFC+C (the final C is for Constructibility). This then allows sets to satisfy the
identity of no form action theory.

Summary of the definition of a set: First, it must satisfy multidimensional dialectical logic. Second,
it must satisfy the Axiom of Constructibility; one must be able to obtain all the elements of the
set through the constructibility of the set.

One more issue must be noted. 'a' and 'non-a' are in opposition, so their unity is also
determinate and independent. Because its opposing sides are both independent and determinate,
and the unity is obtained by negating the opposition between 'a' and 'non-a', the unity is also, in
the sense of dialectical logic, determinate and independent. This unity is jointly and completely
determined by its opposing sides. This is the intrinsic independence of the unity (as has already
been discussed in the subsection "Dialectical Logic").

(3.2) Deducing the ZFC Axioms

Let us first look at the intuitive explanation of the Axiom of the Empty Set: there exists an empty
set ∅ = {}. This set has no elements.

In the subsection "exploring philosophy with mathematics," it was discussed that no form
becomes 'nothingness' in the world of isolation. From the perspective of the world of isolation,
this 'nothingness' is something completely devoid of anything. This 'nothingness' expresses the
fact that a concept has no attributes. When applied to the concept of a set, it is a set that has no
elements. Such a set is then the empty set ∅ . This, in fact, explains the Axiom of the Empty Set.

The Axiom of Constructibility used below requires that elements can be deterministically
obtained from the structure of a set. Of course, there is also probabilistic acquisition of elements
(which will be explored in the later subsection "probabilistic linear set"). For example, with f = 2x
as the structure for the set of even numbers, each time we obtain an even number, it is
deterministic.

There is a kind of absolute isolation. As long as there is a difference between two objects, they
possess isolation. They have an oppositional nature based on this difference (for example, if a
and b are different, one can say 'a is not b'). This is, in fact, the isolation of the world of isolation.
The elements of the sets discussed below are stipulated to possess this isolation. Next, I will use
this definition of a set to deduce the 9 axioms of the ZFC axiomatic set theory system.

Note, the deduction of the axioms here is the most intuitive deduction. Axioms are, in their
essence, intuitive. Due to the needs of mathematical operations, the axioms of set theory have
become very abstract, but in essence, Immediacy is the most fundamental. If the Immediacy of



these axioms does not hold, then the axioms themselves do not hold.

(3.2.1) The Axiom of Choice

Intuitive explanation: One can select an element from a set.

In fact, I believe that no form action theory can be used to explain the intuitive Axiom of Choice.
This requires a modification of the current concept of a set, by adding a special element
'negation' to the set as a motive force. Of course, this element is not a set member in the
traditional sense; it does not directly participate in the operations of the set, but rather exists as
an implicit 'motive force'. For example, A = {x₁, x₂, x₃, not}. In fact, the meaning of the concept of
a set should be: the elements in a set are all isolated from each other; each element is
independent of the others (as will be seen later, this independence does not mean they cannot
have any relationship at all).

When we choose an element x₁ from set A, it is in fact to isolate x₁. But this requires motive force
action and manifestation action. This motive force action is 'not', and this manifestation action is
the non-x₁ (x₂ and x₃) in set A. Non-x₁ is the reverse manifestation of x₁. Choosing an element x₁
from set A already implies the negation of non-x₁, because you did not choose non-x₁. Choice is
not just about picking something; it is also about rejecting other possibilities. This is a no form
united transformation (in fact, x₁, non-x₁, and 'not' also constitute a no form integrated
transformation). This is also isolation dialectical logic.

It is now clear: the reason x₁ can be chosen from set A is because x₁ can be manifested through
the motive force 'not' and non-x₁. This conforms to no form united transformation. In other
words, the reason x₁ can be chosen is because a no form united transformation has been
implemented.

Note, the Axiom of Choice only says that an element can be selected from a set. This can only
express the dialectical relationship among the elements in a set; it does not say how to obtain an
element from a set. Therefore, it cannot replace the Axiom of Constructibility; they are different.

Reflection on the Axiom of Choice:

Mathematical formal expression: For a family of non-empty sets {Aᵢ | i ∈ I} (where I is an
arbitrary index set), which form a set A = {Aᵢ | i ∈ I}, there exists a choice function F: I → i∈IAi� ,
such that for each i∈ I, F(i) = aᵢ∈ Aᵢ. These elements {aᵢ | i∈ I} form a set 'a'.

In other words, the Axiom of Choice has two functions. The first is to select a certain element
from a set. The second is that these selected elements can form a set.

The first function is my intuitive explanation of the Axiom of Choice using multidimensional
dialectical logic.

The second function can also be obtained from my definition of a set:

Due to the first function, we can arbitrarily choose a set, say Aₓ, and arbitrarily choose an
element aₓ in Aₓ. Then, we can arbitrarily choose another set, say Aᵧ, and arbitrarily choose an
element aᵧ in Aᵧ (assuming aₓ and aᵧ are two different elements). Since Aₓ and Aᵧ are both sets, aₓ
and aᵧ are both independent. Since we have assumed they are different, they are therefore in



opposition. Due to the arbitrariness of aₓ and aᵧ, 'a' = {aᵢ | i ∈ I} satisfies the multidimensional
dialectical logic in the definition of a set.

Since A is a set, A satisfies the Axiom of Constructibility, and 'a' inherits the structure of A. This
inheritance can be understood in this way: the set A is constructible, so its element Aₓ can be
obtained. Then, an element aₓ can be arbitrarily obtained from Aₓ (the set Aₓ is also constructible).
In this way, a concrete set 'a' can be obtained. For this concrete 'a', we can obtain all the
elements of set 'a' by obtaining each element of A, and then obtaining each element of each
element of A. Therefore, 'a' satisfies the Axiom of Constructibility. Therefore, 'a' completely
satisfies the definition of a set, so it is a set. If aₓ and aᵧ were the same, they could be merged into
a single element, which would not affect {aᵢ | i∈ I} being a set. In this way, the second function is
deduced. Of course, in the second function, it is not necessary to specify which aₓ it is, but rather
any one in Aₓ. The second function only expresses the existence of the set 'a'.

We see that this axiom can be separated. Therefore, we can retain the first function in the Axiom
of Choice and take the second function as an inference from the first. This can well maintain the
clarity and conciseness of the axiom.

Natural induction (mathematical induction) is one of the most basic proof tools in mathematics,
widely used in fields such as number theory and algebra. Traditionally, it has been regarded as a
self-evident axiom or an intuitive mathematical principle, lacking a clear philosophical origin.
Since natural induction can be deduced from the well-ordering theorem, and the well-ordering
theorem is equivalent to the Axiom of Choice, natural induction can therefore be deduced from
the Axiom of Choice. Since the Axiom of Choice can be deduced through no form action theory
and multidimensional dialectical logic, no form action theory and multidimensional dialectical
logic can therefore deduce natural induction. This provides a philosophical basis for natural
induction, elevating it from an 'intuitive assumption' to a 'result of philosophical deduction'.

(3.2.2) The Axiom of Extensionality

Intuitive explanation: A set is completely determined by its elements. If two sets contain the
same elements, then they are equal, and vice versa.

Since we have already explained the Axiom of Choice using no form action theory, we can now
use no form action theory to explain the 'Axiom of Extensionality'.

Let us assume that two sets, A and B, contain the same elements. According to the Axiom of
Choice, we can select any element 'x' from a set. By using negation, we can obtain the other
elements in the set (non-x). Then, 'x' is not 'non-x'. Then, according to the assumption, since sets
A and B contain the same elements, we can arbitrarily select the same element 'x' from A and
from B. Then, the elements in non-x in A and the elements in non-x in B should be the same.
Otherwise, there would be an element xx in the non-x of A but not in the non-x of B, or vice versa.
Since xx is not x, xx is in A but not in B, which contradicts the assumption.

In this way, for any 'x' in A, the same 'x' can also be obtained in B, and at the same time, the same
non-x can also be obtained. Due to the arbitrariness of 'x', according to the definition of a set, the
multidimensional dialectical logic in the definition of A and B is the same. Obtaining the element
'x' from A also means one can obtain 'x' from B, and vice versa. This shows that the acquisition of



set elements is independent of the specific construction of the set. That is, it is sufficient that a
set has a construction; it is sufficient that one can obtain elements from the set. Therefore, even
if two sets have different constructions, as long as they have the same elements, then the two
sets are the same. Therefore, A = B.

Conversely, if A = B, then according to the definition of a set, they have the same opposing sides,
which means they have the same elements.

This proves that a set is completely determined by its elements. In other words, if two sets are
not equal, then they must have different elements.

(3.2.3) The Axiom of Pairing

Intuitive explanation: If there are two independent objects, they can form a set.

According to my definition of a set, the Axiom of Pairing is very simple. For two different objects
'a' and 'b' that are independent, they can mutually negate and mutually determine each other.
Therefore, A = {a, b} satisfies the multidimensional dialectical logic in the definition of a set.
Moreover, A has only two elements, its structure is determinate, and all its elements can be
obtained through enumeration. Therefore, A satisfies the Axiom of Constructibility. Therefore,
according to the definition of a set, A is a set. If the two objects are the same (e.g., object 'a' and
object 'a'), since 'a' itself is an independent object, it can become a set with one element, {a}.

(3.2.4) The Axiom of Regularity

Intuitive explanation: 1) A set cannot contain itself. 2) The elements of a set cannot form an
infinitely descending chain (an element A₀ in set A contains A₁, which contains A₂, which contains
A₃, and so on, forever).

The first part of this axiom has already been explained in the subsection "Formal Logic". Now, it
can still be explained using the definition of a set.

1) A set cannot contain itself: Suppose there is a set A and another object b, and A and b are
mutually independent. Then, if we negate A, b is non-A. Then they can be unified into a set B. The
question now is whether B can equal A. If B = A, then by negating A, b cannot be non-A, because
b is still in A. Therefore, A and b cannot form an opposition, and thus cannot be unified into B = A.
In other words, a set A cannot contain itself. The b obtained by negating A can only exist in a set B
that is not equal to A, in order for A and b to be unified into B.

Note, b can be a part of A. For example, B = {b, {b}}, A = {b}. B is a valid set. If we negate {b}, we
can obtain b (non-{b}). This b that is obtained is the b in B, not the b in {b}. Although they are
both 'b', their positions are different, and thus they become different. They can be seen as copies
of 'b' in different places. Therefore, B is a valid set. This shows that the 'b' generated by 'negation'
must be able to go beyond the self-containment of A.

2) Infinitely descending chains: If the final endpoint of this infinitely descending chain is the set B,
then because it is an infinitely descending chain, the situation B ∈ B ∈ B... would occur,
continuing forever. Therefore, B would also be an element of B, which would then violate the
principle that a set cannot contain itself.



For the elements A₀ ∈ A₁ ∈ A₂ ∈ A₃ ∈ ... in a set A to continue forever, without end, in this
situation, A₀ as an element of A is in fact infinitely nested (similar to A = {A₀}, A₀ = {A₁}, A₁ = {A₂}...).
Since sets have no measure (for example, a line segment has length; length is the measure of the
line segment), all sets are equal. Therefore, this nesting can never have a limit. Then, any element
in this nesting will depend on the independent existence of the element inside it for its own
existence. Since no succeeding element can be determined to exist independently, then no
element can exist independently, and no element is determinate. Therefore, A₀ is not
determinate, so such a set is meaningless. Because dialectical logic requires that both opposing
sides be able to affirm themselves, and A₀ cannot affirm itself, A does not conform to the
definition of a set.

For a self-containing set like A = {A}, it can also be seen as the nesting situation described above.
According to the above explanation, A does not conform to the definition of a set.

The Axiom of Regularity is often described as a somewhat ad hoc technical axiom to avoid
paradoxes, rather than a principle with a deep philosophical foundation. However, using
dialectical logic, an elegant explanation can be obtained.

(3.2.5) The Axiom of Union

Intuitive explanation: For a family of sets, where this family also forms a set A, combining their
elements together can form a set.

For simplicity, let us consider two sets, Aₓ and Aᵧ. Since they are both sets, their elements are all
independent. Therefore, any two different elements among them are in opposition.

1) Assume that any x belongs to Aₓ but not to Aᵧ. Then, the other elements in Aₓ are not x, and all
the elements in Aᵧ are not x. That is to say, the non-x in Aₓ and Aᵧ is determinate.

2) Assume that any x belongs to Aᵧ but not to Aₓ. The logic is the same as 'assume x belongs to Aₓ
but not to Aᵧ'.

3) Assume that any x belongs to both Aₓ and Aᵧ. Then, the other elements in Aₓ are not x, and the
other elements in Aᵧ are not x. That is to say, the non-x in Aₓ and Aᵧ is determinate.

In other words, all the elements in sets Aₓ and Aᵧ satisfy the multidimensional dialectical logic in
the definition of a set. Moreover, since A is a set, each of its elements can be obtained. Thus,
each element of each element of A can be obtained, which means all the elements of Aₓ and Aᵧ
can be obtained. Therefore, the union of Aₓ and Aᵧ satisfies the Axiom of Constructibility.
Therefore, according to the definition of a set, their union is a set.

(3.2.6) The Axiom of Separation (or Specification)

Intuitive explanation: The Axiom of Separation is that any subset of a set is a set.

For any set A, let AA be any subset of A. Then for any element 'x' in AA, 'x' is also an element in A.
According to my definition of a set, then, in A, the elements that are not 'x' are all 'non-x'.
Therefore, any elements in AA that are not 'x' are also 'non-x'. Consequently, both 'x' and 'non-x'
in AA are independent and determinate. As opposites, they can be unified into the set AA. In
other words, AA satisfies the multidimensional dialectical logic in the definition of a set.



Moreover, since A is a set, all its elements can be obtained, and therefore all the elements of AA
can also be obtained. Thus, AA satisfies the Axiom of Constructibility. Therefore, according to the
definition of a set, AA is a set.

This shows that in a multidimensional dialectical logic, any number of objects within it can also
be in a unity of opposites, and can thereby constitute a valid unity.

(3.2.7) The Axiom of Replacement

Intuitive explanation: For any set A and a function f(x), on the premise that f(x) is defined for
every x in A, the range of f, B, is also a set.

Let us first assume that the function f is a one-to-one correspondence from A to B. Since f is a
function, all the elements of B are independent and determinate.

If there is only one element, bb, in B, then B is a set, because bb can only be determined by itself
('a self is itself'), and its self-determination determines this set.

If there are more than one element in B, we can arbitrarily choose an element 'b' in B. According
to the function f, there must be a unique element 'a' in A that corresponds to it. Then for any
element a₁ in A that is not 'a' (that is, non-a), since f is a one-to-one correspondence, it must be
that f(a₁) is not equal to 'b'. Therefore, the elements in B other than 'b' are not 'b'. Consequently,
both 'b' and 'non-b' are determinate. Their opposition can be unified into B. Therefore, B satisfies
the multidimensional dialectical logic in the definition of a set. Moreover, the function f is a
one-to-one correspondence from A to B. Therefore, A and B have the same structure. That is, by
obtaining all the elements of A, one can, through f, obtain all the elements of B. Therefore, B
satisfies the Axiom of Constructibility. Therefore, according to the definition of a set, B is a set.

For the case where the function f is not a one-to-one correspondence from A to B, according to
the Axiom of Separation, any subset of A is a set. Therefore, for variables with the same function
value, we can take only one of them and form a subset of A, AA, with the single-valued variables
(applying the Axiom of Choice). Thus, the domain of the function f can be changed to AA, and in
this way, f becomes a one-to-one correspondence from AA to B. Therefore, applying the previous
explanation, B is a set.

(3.2.8) The Axiom of Power Set

Intuitive explanation: The set of all subsets of a set forms a set.

For any set A, we can construct its power set P(A), which is the set composed of all possible
subsets of A. Simply put, the Axiom of Power Set states: no matter what kind of set you have, you
can always generate a new set that contains all the subsets of the original set.

According to the Axiom of Separation, any subset of a set A is also a set. Since all sets are unities,
the subsets of A are all independent and determinate. Moreover, the elements of P(A) are
composed of different subsets of A (according to the Axiom of Extensionality, these subsets are
different because they have different elements). Therefore, any two different elements in P(A)
are in opposition, and the elements of P(A) can be unified into P(A) through opposition.
Therefore, P(A) satisfies the multidimensional dialectical logic in the definition of a set. Since any
subset Aₓ of A is a set, this in itself is a determinate structure. In other words, all the elements of



P(A) can be obtained by generating subsets from A. Therefore, P(A) satisfies the Axiom of
Constructibility. Therefore, according to the definition of a set, P(A) is a set.

This shows that in a multidimensional dialectical logic, as long as its objects possess absolute
isolation, the combination of multiple objects and another combination of multiple objects can
also be in a unity of opposites.

(3.2.9) The Axiom of Infinity

Intuitive explanation: In ZFC set theory, there exists an infinite set, whose construction begins
with the empty set ∅ and is recursively generated through the successor operation x ∪ {x}. For
example, A = {∅ , {∅ }, {∅ ,{∅ }}, ...}. This type of set has already been explained in the context of
the Axiom of Regularity; it satisfies the multidimensional dialectical logic in the definition of a set
(explained in the context of the Axiom of Regularity using B = {b, {b}}). Moreover, through this
recursive structure, all the elements of A can be obtained. Therefore, A satisfies the Axiom of
Constructibility. Therefore, according to the definition of a set, A is a set.

This shows that within the framework of no form action theory, infinity is not a concept that
needs to be mysteriously postulated, but a legitimate logical structure that can be continuously
generated through dialectical unity (such as the successor operation) and the principle of
constructibility.

Adding the Axiom of Constructibility to the ZFC system is compatible with the system itself; no
contradiction is generated. Moreover, it makes the explanation of these axioms clearer, more
reasonable, more natural, and more rigorous. For example, in the Axiom of Choice, for the family
of sets A = {Aᵢ | i ∈ I} (where I is an arbitrary index set), since A is a set, all its elements can be
obtained according to its construction. And thus, according to the first function of the Axiom of
Choice, an element can be obtained from each element of A to form a set. If we could not obtain
all the elements of A, we would not know how to choose elements from an infinite number of
sets. Without the Axiom of Constructibility, this can only be entirely relegated to an axiom. This,
in fact, tells us that the Axiom of Constructibility allows us to extend from finite means to infinite
means. This extension allows my intuitive deduction of these 9 axioms to be naturally extended
to a rigorous mathematical expression.

My method provides an intuitive explanation for the 9 axioms of ZFC and unifies them under the
framework of 'dialectical logic', reshaping these seemingly fragmented axioms into an organic
system that logically and necessarily grows out of the philosophical principle of 'multidimensional
dialectical unity'. My explanation shows that these 9 axioms can be seen as a unified dialectical
system, mutually consistent, with no contradiction found among them. This shows that these
axioms, as a whole, conform to the fundamental principles of opposition, negation, and unity of
dialectical logic.

Gödel's second incompleteness theorem shows that the consistency of ZFC cannot be proven
internally; a stronger external axiom is required (Gödel, "On Formally Undecidable Propositions,"
1931). However, my method clearly steps outside of traditional formal logic, because it
introduces meta-logical concepts that formal logic itself cannot handle, such as dialectical unity
and no form action, and examines the foundations of these axioms from within a broader
ontological framework.



These 9 axioms are the methods of operation on sets. Their deduction has all used
multidimensional dialectical logic, which shows that these axioms are different manifestations of
multidimensional dialectical logic. Each axiom embodies the process of opposition and unity. In
fact, these 9 axioms are the symbolic (mathematical) expression of multidimensional dialectical
logic; this is the essence of these axioms. They embody the process of dialectical logic in a
symbolic way. Therefore, these 9 axioms are ultimately expressed as multidimensional dialectical
logic itself.

This redefinition of the set elevates the set from a static mathematical object to a dialectical
philosophical entity, revealing the generative mechanism behind set theory. This not only
explains the mathematical reasonableness of the ZFC axioms, but also provides them with an
ontological and epistemological philosophical foundation, achieving the goal of 'exploring
philosophy with mathematics'. ZFC set theory is not only the foundation of mathematics, but also
the mathematized expression of dialectical logic. This is consistent with the viewpoint I
mentioned in the subsection "exploring philosophy with mathematics": 'the process of no form
transforming into form must necessarily be accompanied by a mathematical structure'. The
essence of mathematics is redefined as a dynamic generative process. In this way, philosophy and
mathematics are connected.

Now that we have used no form action theory and dialectical logic to explain all the axioms in
ZFC+C set theory, we have successfully provided a foundation for set theory. No form action
theory and dialectical logic have become the foundation for set theory, and thus the foundation
for mathematics. Mathematics is no longer a formal system detached from philosophy, but a
direct embodiment of philosophical logic. Furthermore, since philosophy has become the
foundation for all the axioms in ZFC+C set theory, these axioms can no longer be called axioms.
They are no longer intuitive, no longer self-evident, but can be deduced using no form action
theory. Mathematics is no longer a static axiomatic system, but the result of transformation
through a dialectical process. Mathematics becomes the symbolic expression of philosophy, and
philosophy becomes the internal logic of mathematics.

Since mathematical operations require the use of formal logic, mathematics is a combined
application of dialectical logic and formal logic. This combination is a typical application of the
two logics. Gödel's incompleteness theorems are in fact showing that the use of formal logic
alone is incomplete. Dialectical logic and formal logic must be integrated into one, and both must
be used simultaneously to completely construct the mathematical system. Now that the axioms
of ZFC+C have been uniformly explained using no form action theory and dialectical logic,
mathematics will enter an era where the two logics are integrated into one. This is a major
revolution in the history of mathematics. Dialectical logic is also a formalized logic, so the method
of proving and deducing the consistency of a system based only on formal logic as the standard
has its limitations. As has been argued in the subsection "Dialectical Logic," dialectical logic and
formal logic are complementary logics; using only one of them is incomplete.

For a long time, metaphysics has often been considered too abstract, empty, and disconnected
from specific disciplines and the real world. Since metaphysics is the study of the laws 'behind'
specific laws, axioms (especially the axioms of mathematics) should be the objects of study for
metaphysics. Because these axioms cannot be proven within the systems of their specific



disciplines, they therefore belong to the domain of metaphysical research. This provides a
direction for metaphysical research: to study the axioms of a specific field (such as physics,
psychology, sociology, etc.), and thereby to be able to explain the origin and essence of these
axioms from a philosophical perspective, and in turn to provide a foundation for these fields with
philosophy. In this way, philosophy and specific fields are connected, making philosophy a
universal tool for 'founding disciplines'. This ensures that metaphysics is no longer a castle in the
air, but can directly serve the foundational research of specific disciplines, bringing about an
unfold-manifestation of its powerful applied value.

(4) Proving the Continuum Hypothesis Using No Form Action Theory and Dialectical Logic:

Gödel's first incompleteness theorem states that within a consistent formal system that contains
elementary arithmetic, there exists a proposition P that can neither be proven true nor false
(Gödel, "On Formally Undecidable Propositions," 1931). Strictly speaking, such a proposition
appears within the scope of formal logic. According to the isolation logic I have constructed, the
proposition P can be set to: Ind (Indeterminate). In this way, Gödel's incompleteness theorems
become theorems of completeness. In fact, this is precisely the state we need, because the state
of Ind is an indeterminate dialectical state. Therefore, in this situation, if a certain proposition
appears in the Ind dialectical state, it means that it needs to be explained or handled using a
theory that transcends formal logic.

ZFC set theory is such a formal system. Within it, there must be a proposition like P. For such a
proposition, we must certainly use a theory that transcends formal logic to explain it. In the
Trolley Problem in the subsection "Isolation Logic," a result of the Ind state was obtained, and in
the end, the problem was solved through a dialectical method of negating one choice to obtain
another.

Description of the Continuum Hypothesis: In ZFC set theory, there is no cardinal number between
the countably infinite cardinal number (the cardinality of the set of natural numbers), ℵ0 , and
the cardinal number of the continuum (the cardinality of the set of real numbers), 2ℵ0 . This is
often denoted as CH.

(4.1) Gödel proved that CH is consistent relative to the ZFC axiom system. This means that within
the ZFC axiom system, CH cannot be proven false. In other words, CH is consistent with the ZFC
axiom system and does not lead to a contradiction (Gödel, The Consistency of the Continuum
Hypothesis, 1940).

Gödel constructed a special set-theoretic universe(L), called the 'constructible universe'. In (L), all
sets can be generated from the 'empty set' through a recursive construction method.

Because (L) is a model of ZFC (it satisfies all the ZFC axioms), and in (L), CH is true, therefore CH
does not contradict ZFC. Therefore, CH cannot be proven false within ZFC; otherwise, the model
(L) would be inconsistent.

Steps in Gödel’s Construction of the Constructible Universe (L)

(This is not a detailed mathematical proof, but a demonstration of the steps.)

Step 1: Constructing the set of natural numbers



Starting from L0 = ∅:

L1 = {∅} (representing 0)

L2 = {∅, {∅}} (representing 0, 1)

L3 = {∅, {∅}, {∅, {∅}}} (representing 0, 1, 2), …

Until we reach Lω = �n<ωLn = {∅, {∅}, {∅, {∅}}, …}:

This contains all natural numbers (as von Neumann ordinals) and has cardinality ℵ0 (countable
infinity).

Step 2: Beginning the construction of constructible subsets of P(ω)

Lω+1 = Def(Lω):

Contains all definable subsets of Lω, such as "the set of even numbers" {0,2,4, …}.

Does not contain non-constructible subsets of P(ω) (e.g., random reals).

The cardinality is still ℵ0 (countable), but this begins to build the foundation for P(ω).

Step 3: Completing the construction of P(ω)

Lω1 = �α<ω1Lα:

ω1 is the first uncountable ordinal. Lω1 contains all subsets of P(ω) that are constructible in
(L).

In the model V = L, we have P(ω) = {X ⊆ ω∣Xis definable inL}.

Cardinality calculation:

Each X ∈ P(ω) is defined by an ordinal α < ω1 (where |ω1| = ℵ1) and a countable formula.

Thus, |Lω1| = |ω1| ⋅ ℵ0 = ℵ1.

The axiom V = L excludes non-constructible subsets (such as those in models where 2ℵ0 > ℵ1).

Since 2ℵ0 ≥ ℵ1 (by Cantor’s theorem), it follows that 2ℵ0 = ℵ1 (the Continuum Hypothesis,
CH).

(4.2) Paul Cohen’s Proof via Forcing that CH is Not Provable in ZFC

(Cohen, Independence of the Continuum Hypothesis, 1963)

Step 1: Select an initial model

Take a countable transitive model (M) that satisfies ZFC and contains ω (with |ω| = ℵ0) and ω1
M

(with |ω1
M| = ℵ1M).

Step 2: Define the forcing conditions

Let P = {p∣p: ω × ω2
M → {0,1},dom(p)is finite}.

A condition (p) is a finite partial function, where ω2
M is the cardinal ℵ2M in (M).



The order is defined by p ≤ q if q ⊆ p (p is an extension of q).

Step 3: Introduce a generic set (G)

G ⊆ P is a generic filter, meaning it intersects every dense subset (D) of P that exists in (M).

Define a set of new real numbers fG,α: ω → {0,1} for each α < ω2
M:

fG,α(n) = 1 if ∃p ∈ G, p(n, α) = 1.

Step 4: Extend the model to (M[G])

(M[G]) is the extension of (M) by (G). It is also a model of ZFC.

Cardinals in the new model:

Cardinals are preserved: |ω|M[G] = ℵ0, and |ω1
M|M[G] = ℵ1

M[G].

The powerset of ω is now larger: |P(ω)|M[G] ≥ |ω2
M| = ℵ2

M[G] > ℵ1
M[G].

Therefore, inM[G], 2ℵ0 > ℵ1, and CH is false.

Step 5: Conclusion on ZFC Consistency

Since (M[G]) satisfies ZFC, and ZFC is consistent, then CH is unprovable in ZFC.

Thus, CH can neither be proven true nor false; this is the dialectical state Ind.

From the perspective of formal logic, Cohen's proof is not problematic. However, from the
perspective of no form action theory, Cohen's proof is problematic. In his proof, Cohen assumes
the existence of (M) and (G) without constructing the specific elements of (M[G]), which does not
satisfy my definition of a set. A set must be constructible (that is, a set must satisfy the Axiom of
Constructibility), just as Gödel did in his proof. Therefore, Cohen's proof is problematic.

The essence of a proof is to satisfy identity, whether it is the identity of formal logic, the identity
of dialectical logic, or the identity of no form action theory. In fact, the identities of these two
logical systems both belong to the identity of no form action theory. Therefore, in essence, a
proof is to satisfy the identity of no form action theory. This in fact expands the scope of
mathematical proof. It is no longer limited to the identity of formal logic. A proof not only
requires satisfying the laws of formal logic, but also dialectical unity, and also constructible
manifestation.

This precisely embodies the three no form actions that a proof possesses: the laws of formal logic
correspond to the static isolation action (formal logic emphasizes distinction, definition, and
static structure); dialectical unity corresponds to the dynamic motive force action; and
constructible manifestation corresponds to the immediate manifestation action. In other words,
a proof must simultaneously satisfy these three identities; none can be missing.

In traditional proofs of formal logic, people, through experience (for example, by constructing
axioms), have ensured that the identity of dialectical logic and the identity of manifestation are
satisfied in most cases. However, when it comes to the most fundamental field of mathematics,



set theory, formal logic has clearly exposed its shortcomings.

If the ZFC system has the Axiom of Constructibility added to it, then Gödel's proof has already
proven CH. Because, according to Gödel's proof, the set he constructed satisfies the Axiom of
Constructibility, and thus satisfies the identity of manifestation. And he exhausted all
constructible sets. His proof shows that CH and ZFC have no contradiction, which satisfies the
identity of formal logic. Moreover, his construction satisfies ZFC. Since the axioms of ZFC satisfy
multidimensional dialectical logic, his construction satisfies the identity of dialectical logic. More
precisely, since the axioms in ZFC specify all the operations on sets, the set he constructed
satisfies the identity of dialectical logic in its operations. Therefore, Gödel's proof satisfies all the
identities. Consequently, ZFC+C plus Gödel's proof has already proven CH. Therefore, there is no
set with a cardinal number between that of the natural numbers and the real numbers.

From the perspective of no form action theory, ZFC only becomes a complete axiomatic system
when it becomes ZFC+C (and with the addition of formal logic, it already completely satisfies the
identity of no form action theory). The reason why CH could not be proven is because ZFC lacks
the Axiom of Constructibility.

For mathematical proofs, within a consistent formal system containing elementary arithmetic,
Gödel's incompleteness theorems have already proven that there are propositions that can be
judged neither true nor false within the scope of formal logic. For such a proposition, if it is not
contradictory within this system, that is, it satisfies the identity of formal logic, then it is
necessary to see if it satisfies the identity of dialectical logic. If it does, then it is further necessary
to see if it satisfies the identity of manifestation. If all are satisfied, then the proposition is
correct.

(5) A Complete Framework for Reasoning

We use reasoning to obtain determinate and reliable conclusions. But why is reasoning itself
reliable? What is the essence of reasoning? Usually, people believe that reasoning is reliable
based on experience and practice. They just think that 'doing it this way is the best', but they
have failed to provide a convincing theoretical explanation for it and lack an understanding of the
essence of reasoning. A proof is a special kind of reasoning. My explanation of 'proof' can be
entirely used as an explanation for 'reasoning'. The essence of reasoning is also to satisfy identity.
Our usual reasoning is based on formal logic. Like proof, we can also extend reasoning. Reasoning
must satisfy three identities: the identity of formal logic, the identity of dialectical logic, and the
identity of manifestation.

The precise explanation that the essence of reasoning is to satisfy identity:

1) Reasoning must satisfy the three fundamental laws of formal logic, and these three
fundamental laws constitute a no form integrated transformation. A no form integrated
transformation must satisfy the identity of no form. Therefore, reasoning must satisfy the identity
of formal logic.

2) Similarly, dialectical logic also has three fundamental laws: the law of negation, the law of
dichotomy, and the law of unity. They also constitute a no form integrated transformation.

3) It must satisfy the identity of manifestation. To construct a concept or a symbolic object, one



must be able to obtain it and manifest it. For set theory, this means that a set must have a
manifested structure, to embody that the elements of a set can be manifested through the
motive force process of selection.

4) On a more fundamental level, it must satisfy the logic of identity, which includes: no form
united transformation, no form integrated transformation, and the no form trinity. This is a more
fundamental logic; it transcends formal logic and dialectical logic.

This is a framework for reasoning that satisfies the absolute identity of no form. Because the
absolute identity of no form is the most fundamental ground, and every thing must follow this
ground, this is therefore a complete framework for reasoning, and reasoning conducted using
this framework is reliable.

Not only that, but this framework for reasoning is also universally applicable, because it contains
multiple types of reasoning and is suitable for various fields, for instance, philosophy, the
humanities and social sciences, mathematics, physics, logic, art, and so on. Its scope of reasoning
is much larger than that of formal logical reasoning.
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